Package: MOFAT 1.0

MOFAT: Maximum One-Factor-at-a-Time Designs

Identifying important factors from a large number of potentially important factors of a highly nonlinear and computationally expensive black box model is a difficult problem. Xiao, Joseph, and Ray (2022) <doi:10.1080/00401706.2022.2141897> proposed Maximum One-Factor-at-a-Time (MOFAT) designs for doing this. A MOFAT design can be viewed as an improvement to the random one-factor-at-a-time (OFAT) design proposed by Morris (1991) <doi:10.1080/00401706.1991.10484804>. The improvement is achieved by exploiting the connection between Morris screening designs and Monte Carlo-based Sobol' designs, and optimizing the design using a space-filling criterion. This work is supported by a U.S. National Science Foundation (NSF) grant CMMI-1921646 <https://www.nsf.gov/awardsearch/showAward?AWD_ID=1921646>.

Authors:Qian Xiao [aut], V. Roshan Joseph [aut, cre]

MOFAT_1.0.tar.gz
MOFAT_1.0.zip(r-4.5)MOFAT_1.0.zip(r-4.4)MOFAT_1.0.zip(r-4.3)
MOFAT_1.0.tgz(r-4.4-any)MOFAT_1.0.tgz(r-4.3-any)
MOFAT_1.0.tar.gz(r-4.5-noble)MOFAT_1.0.tar.gz(r-4.4-noble)
MOFAT_1.0.tgz(r-4.4-emscripten)MOFAT_1.0.tgz(r-4.3-emscripten)
MOFAT.pdf |MOFAT.html
MOFAT/json (API)

# Install 'MOFAT' in R:
install.packages('MOFAT', repos = c('https://vroshanjoseph.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 214 downloads 2 exports 1 dependencies

Last updated 2 years agofrom:c608e1edcc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winOKNov 17 2024
R-4.5-linuxOKNov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:measuremofat

Dependencies:SLHD